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In canonical quantum gravity certain topological properties of 3-manifolds are 
of interest. This article gives an account of those properties which have so far 
received sufficient attention, especially those concerning the diffeomorphism 
groups of 3-manifolds. We give a summary of these properties and list some old 
and new results concerning them. The appendix contains a discussion of the 
group of large diffeomorphisms of the/-handle 3-manifold. 

I N T R O D U C T I O N  

In the canonical formulation of  general relativity and in particular in 
all approaches to canonical quantum gravity it emerges that the diffeomor- 
phism groups of  closed 3-manifolds are of  particular interest. Here one is 
interested in a variety of  questions concerning either the whole diffeomor- 
phism group or certain subgroups thereof. More precisely, one is, e.g., 
interested in whether the 3-manifold admits orientation-reversing self- 
diffeomorphisms (Sorkin, 1989) (following this reference we will call a 
manifold chiral iff it admits no such diffeomorphism) or what diffeomor- 
phisms not connected to the identity there are in the subgroup fixing a 
frame (Friedman and Sorkin, 1980; Isham, 1981; Sorkin, 1989; Witt, 1986). 
Other topological invariants of  this latter subgroup are also argued to be of  
interest in quantum gravity (Giulini, 1992a). In the sum-over-histories 
approach one is also interested in whether a given 3-manifold can be 
considered as the spatial boundary of  a spin-Lorentz 4-manifold (Gibbons 
and Hawking, 1992; Giulini, 1993) [following Giulini (1993) such 3-mani- 
folds will be called nuclear]. Motivations for studying these questions may 
be found in the cited literature and references therein. 
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The purpose of this paper is to present an account of results (partially 
new) on these questions in a comprehensive way. A simple but nontrivial 
example on which a typical diffeomorphisms group can be studied is 
presented in the appendix. Throughout the paper we shall take the term 
3-manifold to also imply closed, connected, and oriented unless stated other- 
wise. Since 3-manifolds are not classified, we follow the standard route by 
presenting the results for some prime (defined below) 3-manifolds and 
indicate how the quantity in question behaves under taking connected sums 
(defined below). Let us now recall some basic facts from the subject of 
3-manifolds. A standard textbook is Hempet (1976), which also contains all 
the relevant references which we do not list separately. 

Definition I. Let E, El, and E2 be 3-manifolds. We say that E is the 
connected sum of El and E2, in symbols: E ~--- ~"~,lt~)"~2, if the following 
conditions are satisfied: There exist two open 3-balls, B; ~ Ei, and orienta- 
tion-preserving embeddings, h;: Ri-~E, where R i = E ; - B ; ,  such that 
hl(Ri) nh2(R2) = hi(OR1) = h2(0R2) and hl(Rl) wh2(R2) = E. 

The operation of taking the connected sum is well defined, commuta- 
tive, and associative. Taking the connected sum of any 3-manifold E with 
the 3-sphere results in a 3-manifold diffeomorphic to Z. 

Definition 2. A 3-manifold is called a prime 3-manifold (or simply 
prime) iff it is not the connected sum of two 3-manifolds none of which is 
diffeomorphic to the 3-sphere. 

Theorem I (Kneser). Every 3-manifold y ~ S 3 is diffeomorphic to a fi- 
nite connected sum of prime 3-manifolds Hi . . . . .  II n with IIi :~ S 3 for all i: 

n 

E = i ~-=I Hi 

Theorem 2(Milnor). This decomposition is unique, in the sense that for 
any other decomposition of E into prime 3-manifolds {FI~ . . . . .  FI~, } with 
FI~ ~ S 3 for all i, it follows that n -- m and that there exist orientation-pre- 
serving diffeomorphisms ~b;: 1-I i -~ l-I'to, i = 1 . . . .  , n, for some permutation ~r. 

Note that since the manifolds are all oriented, a prime-manifold FI and 
its oppositely oriented version ( -  H) form different primes (in the sense of 
Theorem 2) iff FI i is chiral. 

A 3-manifold Z is called irreducible if every embedded 2-sphere in E 
bounds a 3-ball. Clearly, an irreducible 3-manifold is prime. The converse 
is almost true with only one exception: The "handle" 3-manifold, S ~ • S 2, 
is the only nonirreducible prime. Irreducibility also implies that the 3-man- 
ifold has trivial second homotopy group. [Proof: The so called sphere- 



3-Manifolds for Relativists 915 

theorem (see, e.g., Hempel, 1976) implies for a nontrivial second homotopy 
group the existence of an element different from the identity which can be 
represented by an embedded sphere. However, irreducibility enforces each 
embedded sphere to be contractible.] 

1. PROPERTIES OF THE D I F F E O M O R P H I S M  G R O U P  

Associated to a manifold E we introduce the group of C~ - 
phisms and several subgroups thereof. To define these, let wEE denote a 
fixed, preselected point. 2 We define 

D(E) ..= {~b = C~ of E} (1.1a) 

Do(Z)..= {~ ~D(Y)/4~(~) = ~} (1.1b) 

Dr(Z  ) := {~b ~Do (Y.)/q~, Io = ia} ( 1. lc) 

where ~b,]o: To(E)~To~(y,) is the differential at ~ of the map ~b. In 
words, D contains all diffeomorphisms, Do those fixing ~ ,  and O r those 
which in addition fix the frames at ~ .  There are clearly no orientation- 
reversing diffeomorphisms in OF, but we take D and Do to include 
orientation-reversing diffeomorphisms, should they exist. Additional super- 
scripts + or 0 may then refer to the normal subgroup of orientation-pre- 
serving diffeomorphisms or the identity component, respectively. Note also 
that D F is a normal subgroup of Do ,  but Do is no normal subgroup of D. 

More subgroups of D may be introduced in the following way: Let 
N c E be a closed subset. Then 

D(E, rel N) = {q~ ~D(E)/q~[N = ia} (1.1d) 

denotes the diffeomorphisms fixing N [thus generalizing (1.1b)]. If Bc 
denotes any closed 3-disc neighborhood of oo with diameter r (in some 
fiducial metric), then clearly D(Y~, tel Be) c DF(E) Vr and one may, loosely 
speaking, regard DF(E) as a limit of D(Z, rel B~) for E ~ 0 .  If one is only 
interested in the topological features of the diffeomorphism groups, as we 
are, one may indeed replace any D(Y~, tel B~) with DF(E), or vice versa. 
Now, it is in fact DF(~) [or, equivalently, D(Y~, tel B~)] which is of primary 
interest in general relativity [we refer to Giulini (1992a) for a deeper 
discussion of this point] and to the study of which we now turn. 

The fundamental theorem, first announced in Rourke and de S~t (1974), 
then elaborated on in Hendriks and Laudenbach (1984), Hendriks and 

2The reason for this name is that in the study of asymptotically isolated (flat) systems, where 
the underlying 3-manifold is noncompact with one asymptotic region, it is convenient to 
work with the one-point compactification by adding a point at infinity. 
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McCullough (1987), and McCullough (1986), aims to make precise how 
the diffeomorphisms D F ( ~ ,  ) for any nonprime 3-manifold E are built up 
from those of its prime constituents plus extra ones, and how these extra 
ones can be generated by certain basic operations which allow for more or 
less intuitive geometric interpretations. In order to fully appreciate this 
result, we need to go through some details and preliminary results. At the 
end, when grouped together, these form what we call the theorem of 
Rourke and de Sfi, although the proofs of the claims in Rourke and de Sfi 
(1974) given in Hendriks and Laudenbach (1984) and Hendriks and 
McCullough (1987) do not seem to have been given in a complete form by 
Rourke and de Sfi (1974). In what follows, D's and S's with lower-case 
indices i , j ,  k denote open 3-disks and 2-spheres, respectively, the irreducible 
primes are notationally separated from the reducible one, S 1 x S 2, and will 
be denoted by Pi. 

Let 

) E =  P~ t~ x S  1 
i 1 I 

be constructed in the following way: First, take P~ = Pi - Dr, 1 -< i -< n, 
~P~=S~,  and l copies of I •  2, labeled I x S ~ ,  i<- j -<l ,  such that 
~(I x S~) = Sj, I u S~,2. We call them the factors of Z. Second, take a closed 
3-disc D (~D = So) and remove n + 2l mutually disjoint open 3-discs: 

B ,= D --  D r w U D(j.k) 
i =  I ( j , k )  = (1 ,1 )  

~t.2) (1.3) 

i =  l ( j , k )  = (1 ,1 )  

We shall call B the base and So the sphere at oo.3 Third, eliminate all but 
So of the boundary components of t~B by gluing the boundaries of the 
factors onto the boundary components of the base by using some identifi- 
cation diffeomorphisms 

Gi: S~ ~ Si and G(i,k): S~i,k) ~ S~i,~) (1.4) 

such that the resulting space carries an orientation which is compatible 
with the individual orientations given to the factors and the base before- 
hand. For this, the maps in (1.4) must be orientation-reversing with respect 
to the induced orientations. This construction is unambiguous since any 
two diffeomorphisms of 2-spheres which either preserve or reverse orienta- 
tion are isotopic. Finally, we cap-off So with a 3-disk Do to obtain E. The 

3Since, in the notation above, it will be taken as the boundary ~B~ of a neighborhood of ~. 
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point oo may now be taken as the center of the disc Do and Do itself may 
be identified with one of the B~'s mentioned above. 

Using this decomposition, we can now define four classes of  diffeo- 
morphisms of E that will suffice to generate all orientation-preserving 
diffeomorphism up to isotopy (Theorem 3 below). A proof  may be found 
in McCullough (I986). To unify the notation, we shall commit a slight 
abuse of  language in not always distinguishing between DF(Y. ) and 
D(Z, rel Do) o r  DF(Pi) and D(P~, rel S~). 

1. Internal diffeomorphisms: These are diffeomorphisms that reduce to 
the identity when restricted to B. The individual supports P~ and I x S~ are 
disjoint in Z and elements with support in two disjoint sets of factors 
clearly commute. For the handles S 1 x S 2 one can show that 
D(I • S~ , re t~I  • S 2) is homotopy equivalent to the fiber-preserving 
diffeomorphisms not exchanging the boundary components (I • S 2 being 
viewed as the trivial S 2 bundle over I), and hence to ~(S0(3)) ,  the space 
of based loops of S0(3).  We write 

Dint = DF(P,) • I-I f2(SO(3)) (1.5) 
i = 1  j = l  

2. Exchange diffeomorphisms: Given any two diffeomorphic factors 
P~, Pj (resp. any two I • S~, I x S] )  and the associated diffeomorphism 
(kji: P~ ~ P j  (resp. I • S/2 ~ I  • S]).  Given also a diffeomorphism ~kji of  B, 
exchanging S, and Sj (resp. S(/.k) and S(z~) for k = 1, 2) in such a way that 
outside some neighborhood in B containing these but no other boundary 
spheres ~;/restricts to the identity. Let it also be adjusted in such a way 
that it be compatible with the gluing instructions (1.4): 

Gj o r ls; = Ojils, ~ Gi resp. G(j.k) o (~jils(,.,) = ~hj, ls(,.,, ~ G(i.,) (1.6) 

Simultaneously performing ~b2r and ~j~ now defines a diffeomorphism of E 
which we call an exchange of  Pi and Pj (resp. I x Si and I x Sj). Any 
diffeomorphism generated by the exchanges of  the type just described is 
then called an exchange diffeomorphism of E. 

3. Spin diffeamarphisms: These are like the exchange diffeomor- 
phisms, but concern only the two ends of  handles. More precisely, take an 
orientation-preserving diffeomorphism ~bi: I x S~ ~ I x S/2, exchanging 
S{i.1) and S~r and a diffeomorphism ~i of B exchanging S(i.1) and Su.2) 
such that outside some neighborhood in B containing these but no other 
boundary spheres ~h~ restricts to the identity. Let it also be adjusted in such 
a way that it be compatible with the gluing instructions: 

G,.,) o q~;[s(,.2) = ~J, Is(,.2) ~ Gu,2) and G(I,2) ~ ~)i[s(r = ~ijsu.,) ~ G(i,l) 

(1.7) 
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Performing tk~. and ~ki simultaneously defines a diffeomorphism of E which 
we call a spin of the ith handle. All these generate the spin diffeomorphisms 
of E. 

4. Slide diffeomorphisms: The diffeomorphisms mentioned so far leave 
B invariant as a set. Slides represent those elements that mix the interior of 
the factors with the base B. Consider a fixed factor P; (resp. I x S 2) and 
a nonintersecting, noncontractible and oriented loop V in the complement of 
all other prime factors through p e B (V thus represents a nontrivial element 
in the obvious subgroup nl (Pt) [resp. nl (S 1 x $2)] of nl (X)). Now choose 
j ~ i, cut ~, at p, and connect the two ends to two different (say antipodal) 
points of Sj so that the curve is still nonintersecting. A thin, closed 
neighborhood N of this 'curve-attached-to-sphere' has the topology of a solid 
2-torus with an open ball removed from its interior. N has two boundary 
components, the two-sphere Sj as inner boundary, and a two-toms T as other 
boundary. An inner collar neighborhood T' of T, denoted by [0, 1] x T such 
that 1 x T = T, can be coordinatized by (t, 0, ~0), where ~0 coordinate lines 
are running "parallel" to V [i.e., generate Z = n~ (N)], and 0 runs along the 
meridians (i.e., they are contractible within N). Let a: [0, 1] -* [0, 1] be a 
C~-function, such that a(0) = 0, a(1) = 1, and with vanishing derivatives 
at 0 and 1 to all orders. We define the following diffeomorphism on T': 

s: (t, 0, ~p) ~--~ (t', 0', r 0, ~p +2ha(t))  (1.8) 

and continue it to the complement of T' by the identity. This defines a 
diffeomorphism of E with support in T' c N which we call a slide of P~ along 
V. Analogously, instead of the sphere Sj, we could have taken any of the 
spheres S(j.k) [j v ~ i if ~ generates nl (S  l x Si)]. In this case the resulting 
diffeomorphism is called a slide of the kth end of the j th  handle, I x S], 
along V. We restricted attention to those V that are homotopically nontrivial 
within E, since it may be shown that slides along contractible ~, are isotopic 
to the identity and that slides along the composite loop VlY2 are isotopic to 
the composition of each individual slide. This ends our presentation of the 
four classes of diffeomorphisms. 

Another important class of diffeomorphisms is given by the rotations 
parallel to spheres, which we now define. Given a 3-manifold Y ,̀ an 
embedding E: [0, 1] x S 2-* E, a smooth, noncontractible loop 2: [0, 1] -* 
SO(3) based at the identity, and a function tr as just defined for slides. On 
[0, 1] x S 2 one has the diffeomorphism 

r: [0,1] xS2-*[0 ,1]  x S  2, ( t , x ) ~ - ~ r ( t , x ) : = ( t , ( 2 o a ( t ) ) ' x )  (1.9) 

through which we define a diffeomorphism of Ỳ  (Im = Image) 

E o r o E - l ( p )  f o r p e l m E  (1.10) 
R: Z-*Y-, p ~-* for p r  Im E 
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which we call a rotation parallel to the spheres E(O) and E(1). Any other 
choice of a smooth, noncontractible loop 2 would give rise to an isotopic 
diffeomorphism. If  Im E is a collar neighborhood of a sphere S in Y~, we may 
simply speak of a rotation parallel to S. 

From (1.5) we see that a rotation parallel to a sphere t • S 2 defines a 
diffeomorphism of the handle-manifold which is not connected to the 
identity. We call it a belt-twist. Applied to a particular factor I x S 2 of E, 
it is isotopic to a rotation parallel to S~i,~) or S~;,2), which we consider as 
internal diffeomorphisms. In the same way, a rotation parallel to the 
connecting sphere S; of Pi is considered as internal diffeomorphisms. We call 
it a rotation o f  Pi. We can also define a rotation of the ith handle by a 
rotation parallel to a sphere enclosing S~i,~) and S~;,2). However, this is easily 
seen to be isotopic to two rotations parallel to each one of these spheres (see, 
e.g., Giulini, 1992a) and hence isotopic to the identity within DF(E). 

We say that E is spinorial iff a rotation parallel to So--which we simply 
call a rotation of  Z- - i s  not connected to the identity in DF(E ). A single 
handle manifold is thus not spinorial. It is easy to see that a rotation of Z 
is isotopic to rotating all P;. Thus, 12 is spinorial iff any of the P~ is (Giulini, 
1992a). 

Given these definitions, we remark that there is a certain ambiguity in 
the definition of slides of ends of handles or spinorial primes. To see this, 
note that an alternative choice of the map s in (1.8) would have been to let 
also 0 wind once around a full range: 0' = 0 + 2rw(t). This would impose 
an additional rotation parallel to the sphere boundary component Sj of N, 
so that the resulting diffeomorphism differs from the previous one by the 
rotation parallel to Sj, which may be thought of as an internal diffeomor- 
phism and which is isotopic to the identity in D(P~, rel Sj) iff Pj is a 
nonspinorial prime. In the case we slide the kth end of the j th  handle the 
resulting diffeomorphisms contain an additional rotation parallel to the 
nonseparating sphere S~s,k ) (k = 1 or 2) which is not isotopic to the identity 
within D(I x S~, rel S~s,I ) w S~j,2))). This in fact exhausts all ambiguities, 
since higher rotation numbers in the 0 coordinate just result in more 
rotaations parallel to the spheres, which, within internal diffeomorphisms, 
are isotopic to the identity for even rotation numbers. Thus we have exactly 
two isotopically inequivalent definitions for sliding spinorial primes or ends 
of handles. They differ by rotations of the primes or belt-twists of the 
handles. Let us now state the fundamental theorems, the proofs of which 
may be found in the cited literature. 

Theorem 3. Every diffeomorphism of Y, is isotopic to a finite sequence 
of diffeomorphisms built from the four types described above. 

Theorem 4 (Rourke and de Sfi). Given the prime factorization (1.2), 
then there is a homotopy equivalence [denoted by ~ ;  f~( . )  denotes the 
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space of based loops in ( �9 )] 

DF(E) ..~ (i=(-II DF(Pi) ) • (j=~I1~so( 3) ) • ~C (1.1l) 

The significance of this result lies in the following: It is nontrivial that 
D F is a product fibration whose fibers are the internal diffeomorphisms. We 
express this by saying that internal diffeomorphisms do not "interact" with 
external diffeomorphisms represented by f~C. Generally, one might have 
expected a weaker result to hold, namely that D F is a nonproduct fibration. 
In fact, had one considered all diffeomorphisms and given up the restriction 
to those fixing a frame, an analogous result would fail to hold. A 
counterexample is given by a 3-manifold E which is the connected sum of 
two spinorial primes P~ and P2. In D(E) the rotation parallel to the 
connected sphere S~ (considered as an internal diffeomorphism) is isotopic 
to the rotation parallel to the connecting sphere $2. That is, there is a path 
in D(Z) connecting two elements in Dr(Z) which (by spinoriality) cannot 
be connected by a path running entirely within the internal diffeomor- 
phisms. The fibration thus cannot be a product. 

An immediate corollary of the product structure (1.11) is 

~I,(DF(E)) = (i=fIl lt~(DF(Pi)) ) X (jFI= l ~, + ,(SO( 3)) ) 

• rck+l(C ) for k > 1 (1.12a) 

where we had to separate the case k = 0 from all others for the reason that 
the homotopy equivalence (1.11) does not imply a direct product structure 
for the zeroth homotopy groups, as it does for all the higher ones 
(expressed by (1.12a)). The direct product structure is valid for k = 0 only 
on the level of sets, but not on the group level, when the group structure 
of each of the sets on the right hand side is taken into account. However, 
the following facts can be established: (i) the factor in brackets (represent- 
ing the internal diffeomorphisms) in (1.12b) forms a generally non-normal 
subgroup, (ii) each spinorial prime Pi has a central Z2 in go(Dr(Pi)) 
generated by a rotation of P,-, which together with Z2's generated by belt 
twists form a normal I-I~=l Z2 in ~o(DF(2)), where m is the number of 
handles plus the number of spinorial primes, (iii) the subgroup of 
~o(DF(E)) generated by all slides and rotations of spinorial primes and belt 
twists (as described under (ii)), is normal. This is how, at this point, (1.12b) 
should be read. In particular, the symbol x is a set theoretic Cartesian 
product, but no direct product on groups. 
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In (1.12a-b), the space C is still undetermined. It is called the configu- 
ration space of the 3-manifold Y~, and in some sense labels and topologizes 
the different relative positions of the primes when combined to form E. 
From Theorem 3 it follows that its fundamental group is generated by 
exchange, spin, and slide diffeomorphisms. Furthermore, it has been shown 
(Hendriks and McCullough, 1987) that ~C ~ F7 x f~C~, where F~ is the 
free group of l generators and F7 its n-fold product. It accounts for the 
slides of the n irreducible primes Pi through the l handles. It would 
certainly be desirable to continue the factorization to f~C~ if possible, but 
generally not much seems to be known about the detailed structure of C~. 
For more general information on C~ we refer to the literature (Hendriks 
and Laudenbach, 1984; Hendriks and McCullough, 1987). In the appendix 
we investigate in more detail the group no(DF(E)) for the case where E is 
given by the connected sum of l handles. There we shall be interested in 
learning how slides interfere with exchange and spin or diffeomorphism by 
studying small quotient groups with obvious representations. Heuristic 
arguments in canonical quantum gravity suggest that the different represen- 
tations of no(DF(E)) characterize different sectors in quantum gravity 
(Isham, 1981). Usually attention is restricted to one-dimensional represen- 
tations, but this seems unnecessarily restrictive (Giulini, 1992b). However, 
special proposals for the construction of quantum states might be em- 
ployed to preclude certain sectors (Hartle and Witt, 1988; Giulini and 
Louko, 1992). In Theorem A of the appendix it is, e.g., shown that 
restriction to Abelian sectors implies that for an l > 2 handle manifold, 
spins followed by exchanges are necessarily represented trivially. This is a 
purely kinematical result and independent of any requirement as to how to 
construct the quantum states. In contrast, the considerations in Hartle and 
Witt (1988) and Giulini and Louko (1992) made essential use of the 
no-boundary proposal for the construction of quantum states. 

We can now introduce the properties of 3-manifolds which we wish to 
give information about in this article. We indicate how these properties 
behave under taking connected sums so that we can eventually restrict 
attention to prime 3-manifolds. Table I summarizing their properties is 
presented in Section 2. 

�9 Chirality: A manifold is called chiral iff it does not allow for an 
orientation-reversing self-diffeomorphism. It follows immediately from 
Theorem 2 that a 3-manifold is nonchiral iff no prime in its prime 
decomposition is chiral. Chirality for the relevant spherical primes is nicely 
demonstrated in Witt (1986). Chirality of the flat 3-manifolds R3/Gi, 
i = 3, 4, 5, 6, may be shown by inspection (D. McCullough, private com- 
munication) using results from Lee et al. (1993). In Table I, + stands for 
chiral and - for nonchiral. Chirality is abbreviated by C and is listed in 
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Table I. Properties  o f  Prime 3-Manifo lds .  

Prime II H C  S C N H I ( H  ) no(Dr(H)) nl(Dr(Yl)) n , (Dr ( r l ) )  

S3/D~ + + + - Z 2 x Z 2 O* 0 nk(S 3) 
S:~/D*,, + + + - Z 2 x Z 2 D~6,, 0 nk(S 3) 

3 * S /04(2n + i ) -~- "}- q- "}- Z4 Ds(2n* + I) 0 nk(S 3) 
S 3 / T  * 9 q- + -- Z 3 O* 0 /~k(S 3) 

$ 3 / 0  * w -~ .~- -}- Z 2 O *  0 nk(S 3) 
$ 3 / I  * 9. ..}- q- -- 0 [* 0 ?zk(S 3) 

S3/D * x Zp + -~ -.~ -- Z 2 • Z2p Z 2 x O*  Z /~k(S 3) x z k ( S  3) 

S3/D*n X Zp q- - } -  - ] -  - -  Z 2 x Z2t , Z 2 x D*6,, Z nk(S 3) x n~(S 3) 
3 , * Z ~k(S  3) x n~(S  3) S /D4(2n+l) x Z  p -.}- -}- -if- -]- Z4p Z 2 x D s ( 2 n + l )  

S3 /T  * • go 9. -{- q- - Z3p Z 2 • O* Z 7~k(S 3) •  3) 
$3/0 * x Z  r w + + + Z2p Z 2 x O *  Z nk(S 3) xnk(S  3) 
$3/I * x Z,., ? + + - Zz, Z 2 x I* Z •k(S 3) • / [k(S 3) 

S3/Ot2k(2n+ II x Zp + + + + Zp X Z2k Z 2 x D8c2~* + i) Z nk(S 3) x ~zk(S 3) 
$3/T8 . 3m x Zp 9. -1- -1- - Zp • Z3m O* Z gk(S 3) • ~k(S 3) 

L ( p , q , )  w -- + ( - ) "  Zp Zz  Z nk(S 3) 
L ( p ,  q2 ) w +  -- + ( - - ) P  Z v Z 2 x Z  2 Z x Z  nk(S3)  x n k ( S  3) 

L(p,  q3) w ( --)P Zp Z2 Z x Z nk(S 3) x ~k(S 3) 
L(p,  q4) w - + ( - ) P  Zp Zz  Z x Z  nk(S 3) x n k ( S  3) 

R P  3 + + Z 2 1 0 0 

S 3 + 0 1 0 0 

S2 x S 1 

Ra/GI 

R3/G2 

R3/G3 
R3/G4 

Ra/G5 
R 3/G 6 

S I x R e 

K(n, 1).,./ 

-}- Z Z 2 x Z 2 Z 7gk(S 3) X ~k(S 2) 

+ -- + Z x Z x Z St(3, Z )  0 ffk(S 3) 
+ - + Z x Z 2 x Z2 AutZZ(G2) 0 n~(S 3) 
+ + + Z x Z 3 AutZ2(G3) 0 nk(S 3) 
-~ -}- -- Z )< Z 2 Aut~?(G4) 0 lrk(S 3) 
+ + + Z AutZ2(Gs) 0 nk(S 3) 

-~ -}- --  Z 4 • Z 4 AutZ2(G6) 0 rck(S 3) 

+ Z x Z:s AutZ2(Z • Hg) 0 nk(S 3) 

+ * * An AutZ2(n) 0 nk(S 3) 

the fourth column. An asterisk stands for: has to be decided on a 
case-by-case analysis. 

�9 Spinoriality: A 3-manifold is called spinorial iff a rotation parallel 
to the boundary sphere of an embedded 3-disc is not in the connected 
component of D r ,  where D r stabilizes a fixed interior point (and all frames 
at this point) of  the disc. It can be shown (e.g., Giulini, 1992a) that a 
3-manifold is nonspinorial iff no prime in its prime decomposition is 
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spinorial. In Table I, + stands for spinorial and - for nonspinorial. 
Spinoriality is abbreviated by S and is listed in the third column. 

�9 Nuclearity: A 3-manifold is nuclear iff it is the spacelike boundary 
of a Lorentz 4-manifold with SL(2, C) spin structure. The necessary and 
sufficient condition for Z to be nuclear is that the {0, 1 }-valued, so-called 
Kevaire semicharacteristic u(Z) is 0 (Gibbons and Hawking, 1992). It can 
be shown that a 3-manifold is nuclear iff the number of nuclear primes in 
its prime decomposition is odd. For disconnected Z one has the following 
simple rule (Giulini, 1993): E is nuclear iff the number of components with 
even number of nuclear primes in their decomposition is even. In Table I, 
+ stands for nuclear (u = 0) and - for nonnuclear (u = 1). Nuclearity is 
abbreviated by N and is listed in the fifth column. There, ( - ) P  stands for 
+ if p even and - if p odd; an asterisk stands for: has to be decided on 
a case-by-case analysis. 

�9 Homology groups of E: The homology groups are merely listed for 
reasons of completeness. Let A denote the operation of Abelianizing a 
group and F that of taking the free part of a finitely generated Abelian 
group. The homology H ,  (abbreviating the zeroth to third homology 
groups as a row-quartuple) is then given in terms of the fundamental 
group: H ,  = (Z, Anl, FAn1, Z). The fundamental group of a connected 
sum of two 3-manifolds E1 and Z z is the free product (denoted by ,)  of the 
individual ones: rcl (El w •2) = rcl ( E l )  * rcl (~'2)" It is infinite if neither of the 
two manifolds is simply connected. For the homology this implies 

H . ( E  1WZ2) = (Z, H1(s x HI(Z2) , H2(Z1) x H2(~2)  , Z )  

Since//2 = FH,, it is enough to list Hi which is done in the sixth column. 
There, the symbol Arc denotes the Abelianization of the group represented 
by n. 

�9 Homotopy groups of De(Z): In general relativity, the classical 
configuration space Q satisfies rck(Ds) = rck +l(Q), so that we obtain infor- 
mation on its topology by studying the topology of DF. It is explained in 
Giulini (1992a) in what sense this is equally valid for the configuration 
space of closed and open universes. Theorem 4 shows how far these groups 
are fixed by the corresponding ones for the primes. It tells us that the latter 
ones are contained as subgroups. The zeroth and first homotopy groups of 
D,.(Y.) [resp. the first and second homotopy group of Q(s are listed in the 
seventh and eighth columns, respectively, and the higher ones rck(DF(s 
for k -> 2 [resp. rck + I(Q(s are reduced to those of spheres of dimension 
two and three in the ninth column. Calculations for rco(DF(H)), where II 
is a spherical prime, were first presented in Witt (1986). Details of the other 
calculations are given in Giulini (1992a). In the seventh column the 
symbols AutZ+2(G) are interpreted as follows: By Aut(G) [where G is the 
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fundamental group of the prime P, which we identify with n~ ( ~ ,  P)] we 
denote the automorphism group of G. It is generated by Do~ via its action 
on the fundamental group. Aut+(G) denotes the subgroup generated by 
the orientation-preserving diffeomorphisms D + (P). Finally, AutZ+2(G) de- 
notes a central Z2 extension thereof (due to spinoriality of P), where the 
extending Z2 is generated by a rotation parallel to a sphere whose bound- 
ing disc contains ~z. St(3, Z) is a so-called Steinberg group [see, e.g., 
paragraph 10 in Milnor (1971) for more information about St(n, Z)], which 
is a central Z2 extension of SL(3, Z). It is a perfect group (i.e., its own 
commutator subgroup). Hg denotes the fundamental group of a genus g 
Riemann surface. 

�9 Validity of Hatcher conjecture: For a particular class of spherical 
primes (explained below), the information given about nk(DF) depends on 
the validity of the so-called Hatcher conjecture. This motivates our indicat- 
ing its status for the relevant primes within the list. It states that the 
diffeomorphism group for a spherical prime is (as a topological space) 
homotopy equivalent to the space of isometries (of the obvious metric). A 
weak implication thereof (called the weak conjecture) is that these spaces 
have isomorphic zeroth homotopy group. The calculation of no(DF) only 
depends on the validity of the weak conjecture, whereas those for nk(DF), 
k-> 1, depend on the full conjecture. A + indicates validity of the full 
conjecture; a w the validity of the weak form; and a question mark, that we 
do not have any information. The Hatcher conjecture is abbreviated by HC 
and is listed for spherical primes in the second column. 

2. THE PRIME 3-MANIFOLDS 

Table I presents the relevant data for all known prime 3-manifolds 
except the nonsufficiently large K(n, 1). The first column contains their 
conventional names as already used in the physics literature (e.g., Witt, 
1986). The top line names the columns as outlined above. Below this line, 
the table is divided into three disconnected parts, which we call subtables, 
the first and third of which are again subdivided into so-called blocks. The 
first subtable contains the known prime 3-manifolds with the finite funda- 
mental group (which is clearly identical to the set of all known 3-manifolds 
with finite fundamental group). They are all of the form S3/G, where G is 
a finite subgroup of SO(4) with free action on S 3. They are also called 
spherical primes. The first two blocks contain those S3/G with G noncyclic, 
the third G = Zp for p > 2, and the fourth G = Zp for p < 2, i.e., the real 
projective 3-space, Rp3= $3/Z2, and the 3-sphere itself. 

The first block has G c SU(2) and the resulting 3-manifolds are 
homogeneous. The indexing integer has range n > 1. In the second block G 
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is not contained in any SU(2) and the manifolds are not homogeneous. 
The order of Zp, i.e., p, is coprime to the order of the group the Zp is 
multiplied with and p > 1 in the first six cases. In the remaining two cases 
p = 1 is also an allowed value. The other indexing integers have ranges 
n > 1, m > 2, and k > 3. The third block contains the so-caUed lens spaces. 
Since Zp can act in different, nonequivalent (i.e., not conjugate by a 
diffeomorphism) ways, they are labeled by L(p, q) with an additional 
integer q coprime to p. Here, ql stands for q = _+1 modp,  qz for 
q-~ _+ 1 m o d p  and q 2 =  1 modp,  q3 for q 2 = _  1 modp,  and q4 for the 
remaining cases. Among all L(p, q2) are those of the form L(4n, 2n - 1), 
n > 2. For those the + is valid in the HC column and w for the remaining 
cases. The L(p, ql) are the only homogeneous lens spaces. Finally, we note 
that it is a still open conjecture (involving some subconjectures) that this 
list comprises all 3-manifolds of finite fundamental group (see, e.g., 
Thomas, 1986, 1988). Presentations of the finite fundamental groups occur- 
ring here may be found in Orlik (1972) or Witt (1986). 

The second subtable consists of a single member, namely the only 
nonirreducible prime: S z • S 3. The third subtable comprises the irreducible 
primes with infinite fundamental group which in addition are sufficiently 
large (SL). They fall into the class of K(rc, 1) spaces (Eilenberg-MacLane 
spaces), that is, spaces whose only nonvanishing homotopy group is the 
first. The condition of being sufficiently large means that these 3-manifolds 
allow an embedding of a closed Riemannian surface such that the induced 
homomorphism on the fundamental groups is injective. Physically speak- 
ing, a noncontractible loop on the embedded surface is also not con- 
tractible within the ambient 3-manifold. In particular, the fundamental 
group of a SL 3-manifold contains as subgroup the fundamental group of 
a Riemannian surface. A sufficient condition for an irreducible manifold to 
be SL is that the first homology group (which is the Abelianization of the 
fundamental group) is infinite. The reason why we restrict to the subclass 
of sufficiently large ones is simply that not much seems to be known for 
general K(n, 1)'s. Now, the first block contains all 3-manifolds of the form 
R3/G, where G is the discrete subgroup of the affine group in 3 dimensions 
that acts freely and properly discontinuously on R 3. They comprise all flat 
3-manifolds (i.e., admitting a flat metric). G1 is equal to Z x Z x Z 
(i.e., R3/Gj is just the 3-torus), and G2 . . . . .  G 6 are certain extensions 
of the groups Z2, Z3, Z4, Z6, and Z2 • Z2, respectively, by G~ (i.e., 
R3/G2 . . . . .  R3/G6 are further quotients of the 3-torus). The second block 
contains manifolds of the form S ~ • Rg, where Rg denotes a Riemannian 
surface of genus g with fundamental group Hg. The third block represents 
all other sufficiently large K(n, 1) primes. For relativists, an interesting 
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property of K(n, 1) primes is that no connected sum containing at least one 
of them admits a Riemannian metric of everywhere positive scalar curva- 
ture. Moreover, if it admits a nowhere negative scalar curvature metric, it 
must in fact be fiat, i.e., the 3-manifold must be one of the six ones listed 
in the first block. This has been proven in Gromov and Lawson (1983) and 
its significance for general relativity pointed out (Witt, 1987). 

APPENDIX 

In this appendix we investigate in more detail the diffeomorphisms of the/-fold connected 
sum of handles: 

t 
E = i~1 S l x  S 2 (AI) 

Its fundamental group is given by the/-fold free product of Z: 

hi(Z) = * Z=:Ft (A2) 

where Ft just stands for the free group on I generators. We visualize the generator gi of the ith 
Z as a smooth, nonintersecting, and oriented curve which starts from some basepoint, enters 
the ith handle through S, :) ,  leaves it through Soa ), and returns to the basepoint. The 
direction defined by gi is called positive. By gigs we denote a curve that first traverses the ith 
and then the jth handle in positive directions. 

According to equation (1.12b) and the following remarks, one has (McCullough, 1986) 

~o(Dr(X)) = Z2 ~ n~(Cl) (A3) 

where the ith Z 2 is generated by a belt-twist of the ith handle. 
As remarked earlier, rq (Ct) is generated by slides, exchanges, and spins. In paragraph 4.3 

of Laudenbach (1974) it is shown that the following sequence is exact: 

0--* ( ~  Z2--*~o(D+~(2)) ~Aut(Ft)  -* 1 (A4) 
i = 1  

where (~  ~= 1 Z2 is the same as above (i.e., the ith Z 2 is generated by a belt-twist of the ith 
handle). Now, the handle manifold S 1 x S 2 is nonspinorial, so that Z is also nonspinorial. But 
for nonspinorial 3-manifolds one has (Giulini, 1992a; Witt, 1986) 

Together (A3)-(A5) imply 

that is, 

no(DF) ~ no(D +) (A5) 

no(D,~(Z)) =(,=(~) Z2) x Aut(F~) (A6) 

~zl(Cl) ~ Aut(F/) (A7) 

In quantum gravity one is, e.g., interested in some of the representation properties of 
n o (D r), which we can now investigate. We are interested in the question of how slides interact 
with the other operations, in particular the exchanges. The reason for this is that slides 
generate those diffeomorphisms which mix the interior and exterior of primes (as explained in 
Section 1) and are thus harder to interpret physically, at least in an approximation where the 
primes are treated as individual particlelike entities (geons). In view of this, one might, e.g., 
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be interested in the following question: Under what conditions may we forget about slides? A 
first simple answer for the example considered here is provided by Theorem A below. 

Since internal diffeomorphisms (here the belt-twists) can be given representation indepen- 
dent of  the rest, we may restrict attention to the group F t ,= Aut(Fz). We will follow Chapter 
7 of  Coxeter and Moser (1965) in our description of  the presentations for F t. Fz can be 
generated by four generators: P, O, Q, and U, whose action on the ge is given by 

P: [gI, g2, g3 . . . . .  gt] ~-~ [g2, gl,  g3 . . . . .  gt] (A8a) 

Q: [gt,g2, g3 . . . . .  gl] ~-*[g2,g3,g4 . . . . .  gl] (A8b) 

O: [gl,g2, g3 . . . . .  gl] ~-"~[glI,g2,g3 . . . . .  gl] (A8c) 

U: [gt ,gz,  g3 . . . . .  gt] ~--~[glg2, g2, g3 . . . . .  gt] (A8d) 

Their "physical" interpretation is as follows: P exchanges handle 1 and handle 2, Q exchanges 
all ! handles in cyclic order, O spins handle 1, and U slides the second end of  the first handle 
through the second handle in a negative direction. P and Q alone generate the permutation 
group of  l objects which is a sub- but no factor group of  Fz, and P, Q, O generate an order 
2q! subgroup with obvious interpretation (it may be characterized as the group of rearrange- 
ments of  1 books in a shelf with no orientations given to the backs). The element (OU) 2 
[ = (UO) 2] represents a slide of the whole of  the first handle through handle two. If, in addition 
to the relations given below, one imposes the relation (OU) 2 = E, one obtains a presentation 
of  the group GL(I, Z )  which is a factor group of F / (Coxeter and Moser, 1965). 

We shall now give the relations for the generators P, Q, O, and U with E the identity. 
Given them, we then study some quotient groups by imposing additional relations 
Re(P, Q, O, u )  = E by hand, which gives us a presentation of  Ft/NR, where N R is the smallest 
normal subgroup in F t containing the elements Re(P, Q, O, U). The reason for this is that a 
representation p: F t ~GL ( I ,  C) satisfying Re(p(P), p(Q), p(O), p(U)) = I comes from a repre- 
sentation of  Ft /N  R, which, in the cases we choose, is very simple. We can thus immediately 
give all the representations of  F I which satisfy these relations. 

F l is uninteresting and just given by Z2, generated by the single spin O. For F 2 one has 
P = Q and the relations for the remaining generators are 

p2 = 0 2 = (po)4 = (POPU)2 = (POU)3 = E, (OU) 2 = (UO) 2 (A9) 

Let us look at this case first before going to the general case. 
�9 Abelian representations: The presentation of the Abelianization AF  2 of  F 2 is easily 

obtained (all generators commute) and given by 

p 2 =  0 2 = U 2= POU = E (AI0) 

which is just the group Z 2 x Z 2 generated by P (left Z2) and O (right Z2) and where U 
generates the diagonal Zz. For an Abelian representation this implies that any of  the 
generators P, O, U is nontrivially represented precisely if one of  the others is. There is no P - Q  
correlation unless one imposes U = E. This is also true generally since the factor group U = E 
is Abelian, as we show below. One easily checks from (A9) that taking any of the generators 
P, O, or U to commute with the other two already implies commutativity of  all generators. 
Moreover, it is in fact sufficient to require exchanges to commute with slides only. Proof: If 
P and U commute, 

(POPU) 2 = P(OU)2P = E ~ (OU) 2 = E 

and 

(POU) 3 = P O P ( U O ) z P U = P O U = E  =~ P U = O  

so that P also commutes with O. 
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�9 Slides represented trivially: Setting U = E yields 

p2 = 0 2 = (PO) = E (All)  

which is just Z 2 generated by P = O. Thus representing U trivially leads to an Abelian 
representation with P - O  correlation. 

�9 P - O  correlating representations: Setting P = O yields 

p2 = U 3 = ( p u ) z  = E (A12) 

which is the presentation of the permutation group $3 of three objects [e.g., P = (12) and 
U=(123)] or, equivalently, of D6, the dihedral group of order 6 which describes the 
symmetries of an equilateral triangle (P generates reflections about a symmetry axis, U a 
rotation by 2n/3). There are two nontrivial representations, the one-dimensional one, R~, and 
the two-dimensional one, Rz: 

RI: P ~ - * - I ,  U~--*I 

R2: P~-~(O 1 ~ ) '  U~--~//~-,j3/2-1/2 ~11//22) (A13) 

R 2 shows that there are P - O  correlating representations which also represent U nontrivially. 
�9 Spins represented trivially. Setting O = E yields 

p2 = U: = (PU) 3 = E (A14) 

which reduces to (A12) by replacing U ~ PU. Correspondingly, the two nontrivial representa- 
tions follow from (AI4). This shows how slides can interact with exchanges without involving 
spins. 

Next we turn to the general case 1 > 2. A complete list of relations is given below (the 
relations are not independent). A ~ B means that A and B commute. 

p2 = E (A15a) 

(QP)"  - ' = Q" (A15b) 

p~__~Q-ipQ~ for 2 < i < 1 / 2  (A15c) 

O z = E (A15d) 

0 ~ Q - t e Q  (A15e) 

0 ~ a P  (A15f) 

(PO) 4 = E (A1 5g) 

U ~ - . Q - 2 P Q  2 for l > 3  (A15h) 

U ~ Q P Q - t p o  (A15i) 

U~-, Q - 2 0 Q 2  (A15j) 

U ~ Q - 2 U Q  2 for l > 3  (A15k) 

U ~ OUO (A151) 

U ~ PQ - ~OUOQP (AI5m) 

U,--, P Q  - ~ P Q P U P Q  - t P a P  (m 1 5n) 

( pQ  - i  UQ)2 = UQ - I U Q U -  i (A15o) 

U - I P U P O U O P O  = E (A15p) 

( P O P U )  2 = E (A15q) 



3-Manifolds for Relativists 929 

�9 Abelian representations: In this case (AI5) boils down to the following relations for 
commuting generators: 

p2=  0 2 = PO = P l - t Q - I  = U = E (A16) 

which is the presentation of Z 2 generated by P ( = O). Q equals E for l odd and P for l even. 
The difference of this case from l = 2 lies in the condition U = E which followed from (A15o) 
in view of (Al5a). In fact, (A15o) implies U = E already from the commutativity of U with 
P and Q. Abelian representations (equivalently, representations for which slides and ex- 
changes commute) thus necessarily represent slides trivially. 

�9 Slides represented trivially: If we set U = E, (Al5p) and (Al5a) imply P = O, (A15f) 
says that P and Q commute, and (Al5b) then implies that pt-  l = Q ,  i.e., that Q = E for I odd 
and Q = P for l even. We thus obtain the group Z 2 generated by P ( = O). 

�9 P - O  correlating representations: If we impose P = O, (A15f) implies P ~ Q, (A15i) 
implies U ~ Q, and (AI5j) implies U ~ P, so that all generators commute. 

We can summarize these points in the following theorem. 

Theorem A. Let p be a representation for Ft, l -> 3. The following conditions on p are 
equivalent: 

(a) Slides and exchanges commute. 
(b) p is Abelian. 
(c) Slides are represented trivially. 
(d) p correlates P and O, i.e., p(P) = p(O). 
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